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5. APPLICATIONS

Several specific cases are discussed in this part in order to demonstrate effects of
elasticity on vehicle motion, to illustrate what is meant by the phrases ‘“‘attitude instability”
and ‘“‘deformation instability,” to confirm that gravitational effects on a rotating elastic
satellite can be negligible, and to point out that vehicle stability may be sensitive to dimen-
sion and spin rate changes. In each example, the instability inequalities are used to make a
stability judgment, and these predictions are then checked by numerical integration of the
full, nonlinear differential equations.

To indicate the variety of structural arrangements accommodated by the stability
analysis developed previously, we consider two basic schemes. The first, intended to focus
attention on basic effects of elasticity and on different types of instability, consists of a
simple elastic shaft connecting two rigid blocks. The second arrangement, which is con-
siderably more elaborate, involves a truss connecting two cylindrically shaped bodies,
and thus simulates a space station. Actual dimensions are specified in both cases in order
to make the examples as meaningful as possible; however, once the dimensionless param-
eters 8,,...,0,, have been calculated, each example may be regarded as representing
a large class of problems.

Stiffness matrices for shaft and truss

As a preliminary step, we establish the stiffness matrices for the two connecting struc-
tures and show that both meet the restrictions specified in the instability analysis.

Figures 10 and 11 illustrate the two connections under consideration. In both figures,
the center point F of the end of the structure adjacent to R, is located with respect to the
origin of coordinate system X } by the position vector f defined as

f=fia,+fobi + f3¢4 (5.1

Because the stiffness matrix [S] is to be referred to the mass center P, for coordinate system
X }, the stiffness matrix [s] with respect to point F for coordinate axes X} will be computed

* Parts I and II of this paper appeared in previous issues of this journal (vol. 3, pp. 333-352 and 691-703,
respectively).
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F1G. 11. Truss.

FiG. 10. Shaft.

and then transformed to point P; by the relationship*
[S] = [1"[s)(e] (52)
where _ .
1 0 0 0 i —=f
10 -5 0 £
1 f, -fi 0
0 1 0 0
0 0 1 0

0 0 0 0 0 1

and [t]” is the transpose of [t]. As the form of [s] for both the shaft and the truss proves to

(5.3)

0

0
(] = 0
0

(== R e N

be [ 5y4 0 0 0 0 S16 ]
0 S5 0 0 0 0
(5] = 0 0 S33 S34 0 0 (5.4
0 0 S43 Saa 0 0
0 0 0 0 Sss
S¢1 0 0 0 0 Se6

* This topic is discussed fully in a forthcoming publication Dynamics of Elastically Connected Rigid Bodies by
W. Weaver, Jr. See Developments in Theoretical and Applied Mechanics, edited by W. A. SHAW. Pergamon Press.
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it follows from equation (£.2) that [S] can have a form compatible with the restrictions (4.15)
only if f; and f; are zero, i.e. if the center line of the undeformed structure coincides with the
axes X%. [S] is then given by

i S11 0 0 0 0 ~fas11+s16 ]
0 S50 0 0 0 0
(5] = 0 0 833 f2S33+53, O 0
0 0 f2S33+ 543 S4a 0 0
0 0 0 0 Sss 0
L —fas11 4561 O 0 0 0 f%sll_2f2316+566_
(5.5)
For the circular shaft, the stiffness matrix* elements are
s;, = 6EJ/IP S44 = 2EJ/
S22 = oE/l sss = uJ/l (5.6)

533 = 6EJ/13 S66 - 2EJ/l
S16 = S¢1 = 3EJ/12 S34 = S43 = —3EJ/12

where E is Young’s modulus, u is the shear modulus, ¢ is the cross-sectional area, J is the
polar second moment of area, and [ is the shaft length ; and it is noted that

25,6—1Isy, =0, 2534 +1s33 =0 .7
For the truss
cE :
Syp = T[4 cos?B, sin f,]
E . .
832 = 0'7[4(1 +sin®g, +sin’f)]
ok .
S35 =~ [4 cos?B sin ;]
E - :
Seq = ffl—[4t§(1 +sin3g, +sin>B,)]
) (5.8)
E . i
Ss5 = GT[4t§ cos?B, sin f, +4t} cos®B; sin ;)

E . ;
sse = ZE14(1 +sin*p, +sin*By)

oE .
S16 = S¢1 = T[4t1 sin’B, cos §,]

cE .
534 = S43 = T[—4t3 sin?f; cos B]

* Transverse shearing deformations are taken as small in comparison with bending deformations.
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where E is Young’s modulus, ¢ is the cross-section area of each member, [ is the length of

the truss, and B, fi5,t,, and t; are as described in Fig. 11. The dimensions ¢, and ¢, are seen
to be dependent upon f,, 5, and [ through the following relationships:

t, = ~21~cot By, t; = Elcot B (5.9)

Equations (5.7) apply to the truss as well as to the shaft; and to verify that the restrictions
contained in equation (4.15) are satisfied for both connections, note that

2816 LSy g5, A—S2S11+516)— L1y = 2516 —(L+2f)s1, (5.10)

where L is recalled to be the distance between P, and P, when the structure is in an unde-
formed state. But, as

l=L+2f, (5.11)
equations (5.7), (5.10), and (5.11) show that
2S16 ‘—lel = 0

Similarly,
2834+LS33 (4.1?,:5.5) 2534+IS33 == 0.

Demonstration of elasticity effects

Consider now the elemental elastic system shown in Fig. 12, which consists of two solid
homogeneous blocks connected by a solid circular shaft.

F1G. 12." Elemental elastic system.
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To see how the motion and stability of this body are affected by the properties of the
elastic shaft, take the following as the dimensions and elastic properties of the system (see
Fig. 12 for h,, h,, hy, d, and I):

h, = 10in. I=9in.
h, = lin. d=02in.
(5.12)
hy = 20in. E = 10x 10° psi
m = 2slugs p = 3-8 x 10° psi
Then
fo &, —05in. (5.13)
and
L = 10in. (5.14)

(5.11)
When the simple spin rate @ (about an axis parallel to X%) in reference frame N has the value
@ = /(120m) rad/sec (5.15)

the dimensionless parameters d,,...,d;o, as computed from equations (4.16), (5.5), (5.6),
and (5.12)5.15) together with

m 3
m
B = E(h{+h§) L (5.16)
m
C =Tl +H)
are
d, = 0995 d¢ = 0206 )
8, = —0-600 0, = 556
03 = 0196 dg = 0206 ; (5.17)
o4 = 00253 dy = 0616
65 = 0776 O10 =244 )
and the associated rigid body inertia parameters K; and K, are
! (2.4750.33) 0-141, K, = —0600. (5.18)

Figure 7 shows that the system is spinning about an axis of minimum moment of inertia
of the associated rigid body. If the instability inequalities (4.22)(4.30) are now applied, it
appears that not one is satisfied ; and, as system instability cannot be assured in this case,
system stability is likely (although not guaranteed). To check on the stability status when the
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body is in a circular orbit (¢ = 0) of radius
R = 10,000 miles (5.19)
with an accompanying (constant) angular rate

n=Q = 3091x 10~ * rad/sec (5.20)

(2.11

we now integrate* the equations of motion, noting that, as spin factor « has the large value

(D)
oL = — =
(3.1) € (5.15,5.20)

62,820 (5.21)

it makes no difference whether the equations for torque-free motion, equations (2.87)
(2.95) and (2.96)2.98), or the complete equations (2.87)+(2.98) are employed for this
purpose. Because a certain energy function, to be introduced later, is meaningful only in
connection with the former set of equations, equations (2.87)—2.95) are used in preference
to equations (2.87)2.95).

Consider the following initial conditions, which represent an initial disturbance:

“

w, /& = 0002
w5/ = 0-002
w3/ = 1-000
p/L =0 (p/LY =0
P/l = 1/25,—1)  (p,/L) =0
py/L =0 (ps/LY =0 . (5.22)
6, =40x10"* 0, =0
6, =40x10"* =0
0, =40x10"* 0, =0
Yyp=0  Y,=0  yY3=0

As an alternative to presenting all the variables y;, w;, p;/L, and 8;, the attitude of the
system may be conveniently described in terms of an angle ¢ defined as

¢ = arccos(n; - ¢;)

i) cos(cos Y, cos ¥r,) (5.23)
@ is the angle between the body axis X (fixed in R,) and axis 05, the normal to the orbit
plane. The elastic deformations (p;/L,0;) of the system are characterized, in part, by an
energy function composed of the kinetic and potential (strain energy) energy of the system.
(In the formation of the kinetic energy portion of this function, only linear and quadratic
terms in p;/L and 0; are retained, as the governing equations were taken to be linear in these
quantities. For the details of the energy function construction, sce Appendix A.)

* Integration was performed on a Burroughs 5500 generously made available by the Stanford Computation
Center.
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F1G. 13. Stable elastic system with initial conditions (5.22).

In Fig. 13a, the value of ¢, in radians, is plotted against 7 both for the elastic system and
for the associated rigid body. (The associated rigid body equations are given in Appendix B.)
So that a meaningful comparison can be made between the attitude responses of the elastic
system and the associated rigid body, the initial conditions for the latter are chosen to be

/& = 0002 ]
(.02/6 = 0'002
w,/& = 1000
\ (5.24)
Yy = 0
‘//2 =0
‘//3 =0

these being compatible with the elastic system initial conditions in equation (5.22).

Figure 13a shows that the attitude response of the two systems is in striking contrast.
The elasticity of the connection is seen to bring about attitude changes considerably in
excess of those of the associated rigid body.

The elastic deformation py/L, which is typical, is displayed in Fig. 13b, and is seen to
have an oscillatory character. Collectively, all elastic responses are represented by the
aforementioned energy function, which, when normalized with respect to the associated
rigid body energy [see equation (B7) in Appendix B], and then plotted against 1, as in
Fig. 13c, turns out to be nearly constant. The associated rigid body energy is truly constant,
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and thus permits the formation of a first integral of the rigid body equations of motion. In
contrast, the variation in the normalized energy means that the energy function constructed
in Appendix A does not lead to a first integral of the differential equations (2.87y—<2.95),
which is, however, not surprising, because these differential equations are valid only for
small elastic deformations, ie., they are, themselves, approximate relationships. The
fluctuations in the energy function thus reflect the elastic character of the system, and they
furnish an excellent means for determining the point in the integration at which the dif-
ferential equations can no longer be regarded as describing real motions.

Suppose now that the initial disturbances are cut in half; that is, the initial values are
taken to be

wl/&j = 0'001
(02/6 = (0-001
a);;/@ = 1'0000
pi/L=0 (py/L) =0
p2/L = 1/(26,-1) (p2/LY =0
p3/L =0 (ps/Ly =0 ? . (5.25)
0, =20x 1074 6, =0
0, =20x 1074 8, =0
0, =20x 1074 0, =0
'//1 =0 'pz =0 '//3 =0 )

This leads to the curves shown in Fig. 14, and a comparison of Figs. 13 and 14 shows that
responses are correspondingly reduced. The system under consideration thus appears to
be stable, as was expected on the basis of the stability analysis.

Suppose now that the values of h, and h; are changed to

hy =20in. and hy = 10in. (5.26)

which amounts to an interchange of the earlier values of h, and h,. The é parameters,
obtained by reference to equations (4.16), (5.16), and (5.17), then become

8, = 0980 b = 0206 |
8, = 0:600 5, = 556

55 = 0776 8 = 0206 L (5.27)
8, = 0:0253 8y = 244
55 = 0196 8.0 = 0616
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F1G. 15. Unstable elastic system with initial conditions (5.22).
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and the associated rigid body inertia parameters are
K, = —0501, K, = 0600 (5.28)

which indicate that the associated rigid body spin axis is an axis of maximum moment of
inertia. Application of inequalities (4.22)}-(4.30) now shows that instability inequalities
(4.22), (4.26), and (4.28) are satisfied ; thus, instability is assured. The nature of the instability
is illustrated by Fig. 15, which shows that the attitude angle ¢ continues to grow and that
some of the elastic deformations, e.g., 0, as well as the normalized energy function, increase
exponentially. Moreover, this instability appears before the system has made two complete
revolutions (t = 4n)in reference frame N. These results confirm the prediction of instability,
and further support is obtained from Fig. 16, which shows that a reduction of initial distur-
bances now cannot be used to obtain a reduction of response amplitudes, but merely delays
the time at which a particular amplitude is attained.

8
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F1G. 16. Unstable elastic system with reduced initial conditions (5.25).

The importance of taking elasticity into account when trying to make a stability predic-
tion is now apparent. On the basis of an analysis concerned solely with inertia properties,
one would reach the wrong conclusions. In this connection it may be pointed out that a
change in elastic properties can also have beneficial effects. For example, the unstable
system just considered can be made not only stable, but “nearly rigid” by an increase in the
shaft stiffness. If the diameter 4 of the shaft is increased from 0-2 in. to

d = 04in. (5.29)
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the 4 parameters become
d, = 0980 d¢ = 3290
4, = 0600 8, = 2220
0, =124 0y =329 (5.30)
8, = 0-405 3y = 391
ds = 313 0,0 = 985

and a check of the instability inequalities shows that none comes close to being satisfied.
Hence, stability is expected, and with the initial conditions used previously [see (5.22) and
(5.24)}, integration of the full equations of motion leads to Fig. 17. The values of ¢ for the
elastic body and for the associated rigid body are now nearly identical and the normalized
energy remains essentially constant, which shows that the values of p;/Land 6, remain small.
The elastic system is thus seen to be moving like a rigid body.
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F1G. 17. Nearly rigid behavior.

Types of instability

In view of the complex character and large number of the instability inequalities (4.22)-
(4.30), it is gratifying that one can identify at least two clear-cut types of unstable behavior.
The first of these, called ““attitude instability,” may be said to be obtained when, subsequent
to any disturbance, elastic deformations remain small, whereas the motion of each end
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body differs markedly from simple spin; and the second type, called ‘““deformation in-
stability,” is characterized by rapidly growing elastic deformations, but relatively minor
differences between the motions of the end bodies prior and subsequent to a disturbance.
Consider, for example, the system described by equations (5.12), but change the shaft length
and diameter to

| = 14in., d = 050 in. (5.31)
Then the 6’s have the values
o, = 0995 0 = 2-14
8, = —0:600 9, = 2230
8, = 464 dg = 214 f (5.32)
8, = 0636 d¢ = 144
o5 = 184 010 = 571

and the associated rigid body inertia parameters are

K, = —0257 K, = —0-600. (5.33)
8
8-
=
*8
a9 | Elastic
g /
E -Rigid
) a 4000 127000 1& 0o
B (a) Attitude Response 8 (a) Attitude Response
-7 —IT
§J J‘—/\/—N\'—/\, {j
b T
8 8
ol =0 o W0 100! 000 a 000 50 12000 18000
3 (b) Elastic Response (b) Elastic Response
g g
é >
28 8
.“ .':—
§ | g
=00 75000 100 000 h L 260 12o0o
(c) Energy Function (c) Energy Function
FiG. 18. Attitude instability with initial FiG. 19. Deformation instability with

conditions (5.25). initial conditions (5.25).
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The associated rigid body is now spinning about an axis of intermediate moment of inertia;
a check of the instability inequalities (4.22)+4.30) reveals that one, namely (4.25), is satisfied ;
and the plots shown in Fig. 18 indicate that the attitude angle ¢ (see Fig. 18a) grows rapidly
to the large value =, but that both the elastic deformation p;/L (see Fig. 18b) and the
energy function (see Fig. 18c) fluctuate only moderately. Furthermore, Fig. 18a suggests
that the motion of the entire system resembles that of the associated rigid body. Hence
we have a typical case of “‘attitude instability.”” Next, if | and d are changed to

l=9in, d=016in. (5.34)
then the é parameters become
5, = 0995 5 = 00843 )
&, = —0-600 8, = 356
8, = 0-0801 oy = 00843 ¢ (5.35)

5, =00104 &, = 0252
55 = 0'318 510 = 1'00

and
K, = 0141, K, = —0-600. (5.36)

The instability inequality (4.22) is now satisfied, and integration with initial conditions
(5.25) leads to Fig. 19, which shows that the value of the attitude angle ¢ changes very
slowly while the elastic deformation p,/L grows rapidly and the energy function fails to
remain even nearly constant. This is what is meant by *‘deformation instability.”

Space station

The model considered for the remaining examples is intended to have properties
appropriate for a rotating space station. Such parameters as spin rate and dimensions are
selected on the basis of information contained in [1];* e.g., the distance between the end
bodies is taken greater than 100 ft, and the angular rate (@) of the station is kept below
4 rev/min.

e R

f

HEIGHT = h3
FI1G. 20. Space station.
* Numbers in brackets designate references listed at the end of the first part of this paper.
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Figure 20 shows a plan view of the model. As a matter of convenience, R, and R, may be
regarded as solid homogeneous bodies of mass density w, and the mass m of each is then
given by
Y
m = w—z-(pﬁ—pf)hs (5.37)

where the angle y and the radial distances p; and p, are shown in Fig. 20. The principal
centroidal moments of inertia for R; are

p%+p§)( siny| | k3 LZ}
A= 1 =
m[( s Nt
2+ 2 : hZ
B = m[(”14”2) 1—S¥)+5J (5.38)
_lpt+p L2
C_m[ 2 4

where L, the distance between P, and P, , is given by

[ Bsiny/2 [p%ﬂhpz +p%}
3y p1+p2

(5.39)

and where h; is the height of the cylindrical sections shown in Fig. 20. R, and R, are con-
nected by the twelve member truss shown in Fig, 11. The length [ of the structure, found by
reference to Figs. 11 and 20, is

I =2/(p2—12). (5.40)

Gravitational effects

In order to substantiate the claim made previously that gravitational forces have
negligible effects when the spin factor a is high, we consider the space station in a circular
orbit, first leaving gravitational effects out of account, i.e., omitting gravitational terms from
equations (2.87)-2.95), and the repeating the calculations with the complete set of equa-
tions.

As before, we specify a circular orbit with

R = 10,000 miles

(541)
Q = 3091 x 10™* rad/sec.
The space station is described as follows (see Fig. 20):
p; = 90ft
p, = 100 ft
hy =251t (5.42)
y = n/4rad
w = 10/32-2 slugs/ft3
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and (see Fig. 20)

o = 025in?
E = 10 x 10° psi

RS (5.43)
t; = 50ft

Then, from equations (5.37)5.40),
m = 5790 slugs )

A/m = 6467 ft?

B/m = 503-2 {t?

(5.44)
C/m = 463-7 ft?
L = 1853 ft
I =1797ft
while, from equation (5.11),
fo = —2-80ft. (5.45)
Finally, from equation (5.9), the truss angles f§, and 5 are
B, = 1-515 rad, B3 = 1-526 rad. (5.46)
An angular rate (in reference frame N) of 3 rev/min corresponds to
_ n
& = —rad/sec (5.47)

10

and itmay be noted that this providesat a radius of 100ft an “artificial gravity” of n? ftsec ™2,

or approximately three-tenths (0.3) of the gravitational acceleration at the surface of the
earth.
The spin factor « is given by

=, 101645 (5.48)

]
3.1 (5.41,5.4

andd,,...,d,,,found by using equations (4.16), (5.5), (5.8), and (5.41)(5.47), have the values

61 = 0'611 56 = 0'300
6, = 0793 0, =291
d3 =736 0g = 0192 5. (5.49)

50 =00191 &g =102
55 = 160 10 = 222

J
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The associated rigid body inertia parameters are given by
= —0-988, K, = 0793 (5.50)

! (2.47—.21.33)

so that the associated rigid body is spinning about an axis of maximum moment of inertia.
(Note that the axis X is an axis of intermediate centroidal principal moment of inertia of R,
as indicated by the positive values of 4, and J,.)

When each of the instability inequalities (4.22)-4.30) is checked, it appears that none is
satisfied ; hence, stability is suggested.

A numerical integration of the full, nonlinear equations (2.87)—2.95) and (2.96)+2.98)
is now carried out with the following initial conditions (which describe an initial disturbance
of Ry):

©,/& = 001
w,/® = 001
pi/L =0 (po/Ly =0
po/L = 1/26;—1)  (py/LY =0
(5.51)

py/L = 0 (ps/Ly = 0

91 = O 0’1 = —001

0,=0 ) = —001

0, =0 g, = —001

Y, =0 Y, =0 Y3 =0

The three plots shown in Fig. 21 characterize the results of this integration. The first,
Fig. 21a, reveals an oscillatory variation of the angle ¢ between the body-fixed axis X9
and the orbit plane normal (with which X§ coincides initially), and R, is thus seen to be
performing a “nutational” motion. The deformation p,/L, plotted in Fig. 21b, is representa-
tive of all of the elastic variables, and thus shows that vibrations of the elastic system accom-
pany the aforementioned nutation. The behavior both of ¢ and of the elastic variables is
thus compatible with the designation ‘‘stable’” for the undisturbed motion, and the fact
the energy function remains very nearly constant, as indicated in Fig. 21c, is yet another
indication of stability. Finally, when the integration is repeated subsequent to a reduction
of all initial disturbances, the response is found to be simply a reduced version of the earlier
response. One may, therefore, conclude that the instability inequalities lead to a correct
conjecture in the present case.

When the integration results described in Fig. 21 are compared with the corresponding
results obtained by using equations (2.87)2.95) in place of equations (2.87)—(2.95), it
becomes clear that the relative importance of gravitational effects for structures of the kind
under consideration is negligible. Figure 22 shows the results of such an integration, and
it can be seen that there is no discernible difference between the curves shown there and their
counterparts in Fig. 21. This outcome agrees with the conclusions reached in Section 3,
because the spin factor o has the value 1016-45 and thus falls into the “high” range.
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Fi1G. 22. Vehicle in circular orbit with effects of gravity.

Sensitivity to parameter values
If the values of ¢, and t, (see Fig. 11) are changed from those given in equation (5.43) to

t, =ty =1ft (5.52)
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the values of [, f,, S, and 5 become

[ = 180-0ft, fo = —267ft,

and é,,...,0,0are changed to

8, = 0611 8¢ = 00120
5, = 0793 8, = 291

85 = 460 85 = 00120
S, = 00000477 &, = 637
8s = 0:641 8,0 = 0889

Bi = B3 = 1560 rad

(5.53)

(5.54)

The inequalities (4.22) and (4.26) are now satisfied ; instability is thus assured ; and integra-
tion with the initial conditions (5.51) leads to the curves shown in Fig. 23, in which instability
manifests itself in three distinct ways. The attitude angle ¢ grows, the elastic deformation
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FiG. 23. Instability caused by a change in truss dimensions.
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pi/L increases exponentially, and the energy function does not remain even approximately
constant. This instability manifests itself before the vehicle has made even one revolution
(i.e., T = 2m). As the present example differs from the one described in Fig. 21 only because
it involves different values of the truss dimensions t,,t5, 1, B, 5, and f,, it is evident that
the properties of the elastic connection have an important bearing on vehicle stability.
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By using the instability inequalities, it can also be verified that stability is intimately
related to the value of the angle y (see Fig. 20) and that even the value of @ may be critical.
For example, for the system described by equations (5.42)(5.46), @ has the critical value

@, &~ 1'11 rad/sec (5.55)

as the instability inequality (4.26) is satisfied whenever & equals or exceeds @,. This fact is
of interest for the following reason. As it has been demonstrated previously that a high spin
factor « reduces the importance of gravitational effects, one might, therefore, be tempted
to generate a high « by means of a high @. Butitis now clear that this may not be advisable,
because high values of @ can, themselves, lead to instability.

CONCLUSION

In Part I of this paper the equations of motion were derived for a rotating satellite
composed to two elastically connected, inertially identical, unsymmetrical rigid bodies.
Part II contained a stability analysis in which *‘instability inequalities’” were formulated
by reference to the differential equations of motion. A procedure for the application of these
inequalities, which are expressed in terms of dimensionless parameters reflecting the
inertia and the elastic properties as well as the spin rate of the vehicle, was also outlined. In
Part III the effect of elasticity on vehicle motion is demonstrated, and various types of
instabilities are illustrated.

The principal conclusion reached in this investigation is that the nature of the elastic
connection can appreciably affect the stability of the vehicle. Specifically, certain vehicle
configurations which are predicted to be stable when analyzed as if rigid must be classed
as unstable when flexibility is taken into account. Furthermore, as vehicle stability can be
sensitive to dimension and spin rate changes, vehicle parameters should be selected with
considerable care if instabilities are to be avoided.

(Received 4 February 1966; revised 10 October 1966)

APPENDIX A
ELASTIC SYSTEM ENERGY FUNCTION

In order to be consistent with the formulation of the equations of motion [equations
(2.87Y—+2.95)], which are nonlinear in w; and linear in p; and 6;, one must construct the
energy function E so that it contains all second and lower degree terms in p; and 6;. In
general terms, E is given by

1

E= ) YKR/Pyp (A1)

i=0

where YKR/P” is the kinetic energy in N of body R; with respect to P,, and P is the potential
energy (strain energy) of the deformed elastic connecting structure. Moreover,

NKRi/P,, — NKPi/P. +NKR,-/P.- (A2)
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where
NKPi/P. = %m(NVPi/P‘)Z (A3)

and
N gRilPi %N(,)Ri . NRi (Ad)

From equations (2.6), (2.11), and (A3)

NKPolPe — NEPi/Ps
m
= g (1 +0ps~ 3L+ p))* + (P2 +03p, —01p3)*
+[P3+oy(L+py)—w,p,]%} (A5)
and from equations (A4), (2.16), and (2.6),
NKRo/Po — 1] Aw? + Bw? + Cw3]. (A6)

Next, YK®'/P1 js formed by using a version of "w®* which contains all quadratic terms in 6,
so that, after normalization with (2.86), the kinetic energy of the elastic system with respect
to P, is seen to be

L? 1 ® 2
NgRiPe . |ME o)) L P _233__
B e U 325 25 1]

i=0
L ospr &&’
20lL"® L @
A o} B @} C o}
mL?* ©*> mL?*®»* mL*> @

Al o 62 03\ o ) 2
Yol 1+—‘(1—?2—53)+52(03+0192)——5(02—9193)+9;93]
B| o 03 0\ o P
+mL2_02+_2(1—_—? 3(01+9293)——— _0‘93:'
C [, w 63 02 _ . 2
where
A Og
L2(416)59
B d¢ 0zl l
mL2 (4.16) (510 _5—9)5_2 (A8)
S

— = .
mlL (4.16)510



Dynamics of an elastic satellite—III 1051

The potential energy (strain energy) of the deformed structure may be expressed as
(see Gere and Weaver [18], p. 35)

P = §{x}T[S]{x} (A9)

where {x}T is the transpose of the column matrix in equation (2.30). Using the § parameters
and the structural limitations that were specified in Section 4, one may express P as

mL*&* i\’ P2\’ p3|* s
P(A8§.16) ( 2 )[66(7) +57(1_ +58 f +S;5391

d¢ Ogld

510 69 62 510

The energy function E may now be obtained by substituting from equations (A7),
(A8), and (A10) into equation (A1).

APPENDIX B
ASSOCIATED RIGID BODY EQUATIONS OF MOTION AND FIRST INTEGRAL

The normalized differential equations of motion for the associated rigid body in a
torque-free state are

[43) w w
%2 ok22 (B2)
w w w
w3 w0,  (K1+K;) 0, 0,
7] o © (1+KK,) & @
together with equations (2.96)-(2.98).
One first integral of the equations (B1)+(B3) is
1+ K5 o \? 1—K3(w2)2 ;|2
®. = = +—= = +|= B4
1—K1(@) t1ix, ) Y@ (B4)
where
(K, +Kj3)
K= ———"~ B5
3 (1+K,K;) (B3)

and @, is a constant. The kinetic (and hence total) energy in N of R. with respect to P, is
given by

NKRs/Pr — INgRs I, N@Re (B6)
and may be expressed in terms of @, as

NKRIPe = (41,5°)0. (B7)



